
Responsive Design
Essentials

Responsive Design cover

kelly@onlineinstruct.com

.com

©2016 — Kelly McCathran

Table of Contents

Responsive Web Design� i

Responsive Design cover . 1
Responsive Web & Mobile . 1

Goal of Responsive Design
Most Popular Mobile & Tablet Resolutions 2015 . 2

The Universal Page
Responsive Design Starts with HTML & CSS
Technologies Necessary for Responsive Design

Responsive Considerations & Guidelines . . 4
Do
Don’t
Your Responsive Canvas | The Browser Window
Setting Up Constraints

A Dao of Web Design . . 6
Fixed 960 Pixel Grid System (before Responsive) . 7

12-Column Grid
16-Column Grid

12-Column Layout . 7
Content Could Span Several Columns

16-Column Layout . 7
Content Could Span Several Columns

Planning Responsive | Wireframes . . 8
Responsive Sketch Sheets
Electronic Wireframe & Planning Tools

HTML5 . 9
The Need for New HTML Elements

WHATWG | New Standards Body . 10
Workshop on Web Applications and Compound Documents
HTML5 a Living Standard

See What CSS3 & HTML5 Can Do . . 11
Cascading Style Sheets (CSS) . . 14

CSS Box Model
Three Methods for Applying CSS . 15

Inline
Embedded
External

CSS Vocabulary . 17

©2016 — Kelly McCathran

Table of Contents

Responsive Web Design� ii

Types of CSS Selectors . 18
Element
ID
Class

3-Digit Hexadecimal Values . 19
CSS3 . 20

Rounded CSS Corners
Rounded Corners for Multiple Browsers . 21

CSS Border-radius Prefix
Rounded Corners for IE9

Media Query Intro . 22
Flexible or Fluid Grid = The Formula . 23

Flexible Margins or Flexible Padding
CSS Box Model Review

Reset CSS . 24
The Viewport . 25
Layout Viewport . 26
Mobile Viewport or Visual Viewport . 26
Viewport Control . 27

Viewport Meta Tag
Recommended Viewport Meta Tag
Viewport Width & Height Attributes
iPhone Widths
Viewport CSS
Viewport Width (vw) in CSS3

Is a Pixel a Pixel? . 30
Hardware Pixels (or Device Pixels)
Reference Pixels (or CSS Pixels)
Screen Density
Device-Pixel-Ratio
Window Size

Break Points . 32
Layouts for Each Breakpoint . 32
Framework for Specific Needs . 32

Custom Framework Concerns
Relative Type Sizes . 33

©2016 — Kelly McCathran

Table of Contents

Responsive Web Design� iii

Proportional Type Sizes
Web Typography

Flexible Images . 34
3 Factors in Determining Responsive Images
Flexible Image Concerns by Device
Raster Images on HiDPI or Retina Screens
Responsive Background Images

Responsive Image Options . 37
Browser Prefetching or Link Prefetching . . 40

The Future of Responsive Images | or <picture>
Support for SRCSET
Support for <picture>
Picturefill Responsive Image Polyfill

Responsive Forms . 43
Tips for Forms

Required Reading . 44
Resource Web Sites . 44
CSS Resources . . 44
HTML5 Resources . 45

HTML5 Forms
Browser Testing of HTML . 45
Responsive Website Examples . 46
Responsive Design Resources . 46
Responsive Testing . 47
Responsive Images . 47

©2016 — Kelly McCathran

Responsive Design Intro

Responsive Design� 1

Responsive Web & Mobile
Responsive Design is a design method initially identified by Ethan Marcotte in a book titled “Responsive Web Design.”
Responsive Design is all about flexibility. Most people have heard that websites today should be responsive, but
very few have a handle on what that exactly means. In this class you will get the full picture of how responsive pages
& sites are created and what you need in order to build a Responsive layout.

Goal of Responsive Design
The goal of Responsive Design is to craft websites so they provide an optimal viewing experience across a wide
range of devices from desktop computer to mobile and devices. If a site is built as responsive, it offers easy reading
& navigation with a minimum amount of resizing, panning, zooming and scrolling on the device that is viewing the
content.

“�Smartphone usage is up 394 percent, and tablet usage is up a whopping 1,721 percent as these
platforms now combine to account for 60 percent of digital media time spent.” (from 2010 – 2014)

Source: �comscore.com/Insights/Blog/Mobile-Internet-Usage-Skyrockets-in-Past-4-Years-to-
Overtake-Desktop-as-Most-Used-Digital-Platform

(April 13, 2015)

©2016 — Kelly McCathran

Responsive Design Intro

Responsive Design� 2

Most Popular Mobile & Tablet Resolutions 2015
*in virtual (CSS) pixels. Source: DeviceAtlas
https://deviceatlas.com/blog/most-popular-smartphone-screen-resolutions-2015

©2016 — Kelly McCathran

Responsive Design Intro

Responsive Design� 3

The Universal Page
Web content today must be adaptable and accessible. A “universal page” would be accessible, work well and look
fantastic regardless of browser, platform or screen that the reader chooses. Web pages must adapt to the needs of
the viewer, not simply bend to the “design vision” of the author. Consider that someone looking at your page may
be visually impaired and need larger fonts, they may be blind and have a screen reading application delivering the
content, they may be on a busy train on their way to work in the morning and viewing important content on the small
screen of their smartphone.

Responsive Design Starts with HTML & CSS
A responsive layout starts with clean, semantic HTML. This means that your HTML tags follow the guidelines of the
W3C (World Wide Web Consortium), your IDs and Classes are properly identified and you aren’t writing any non-stan-
dard code. HTML5 includes a few new features that help websites become more responsive, such as the new form
elements (which include over a dozen new input types).

Technologies Necessary for Responsive Design
Much of the technologies necessary to build responsive sites existed when Ethan Marcotte coined the prase
Responsive Web Design:

•	 Fluid Grids or Flexible, Grid-based Layouts (may involve CSS3 Transitions & Transforms)
•	 Flexible Images and Media (CSS-based Graphics)
•	 Media Queries (a module from the CSS3 specification that may be combined with JavaScript to control

resource loading, adaptive media and control device-specific functions)

©2016 — Kelly McCathran

Responsive Design Intro

Responsive Design� 4

Responsive Considerations & Guidelines
Think about what your page should do, not what it looks like. Let the design come from what the end user needs,
not from the idea of what YOU want your page to look like. Cascading Style Sheets (CSS) should be used to
“suggest” the appearance of the page. Older browsers that don’t support modern CSS will display plainer content,
but the content should still show.

Do
•	 Let form follow function
•	 Separate content from it’s appearance
•	 If HTML offers an appropriate element, like <p> or <h1> use it, where it doesn’t create a CSS class
•	 Be sure every element of your page has an assigned style
•	 Use color thoughtfully and with intent
•	 Set your font sizes in ems, rems or percentages
•	 Design for both Landscape and Portrait orientations (and tell users which works best, prompt them to switch

orientation if it works better for the content being viewed)
•	 Keep menus short (consider how to present your menu with the fewest items possible)
•	 Make it easy to get back to the Home page

(your company logo should always be a path back to the home page)
•	 Keep your page in a single window

(opening multiple pages on a smartphone or tablet can be problematic, keep your content in 1 window)

Don’t
•	 Get a design idea stuck in your head then force the programmers to make it “work”
•	 Use any HTML for presentation (no , or <i> tags)
•	 Assign ABSOLUTE units, like pixels or points
•	 Offer “full site” links, this implies that the mobile or responsive site is somehow limited

(instead use terms like “desktop” instead of “full)
•	 Use long, “desktop-like” navigation

Note: �The default resolution
for most Mac monitors
(not including Retina) is
72 ppi. The Windows
default resolution is
96 ppi, meaning 72
pixels = 1 inch on the
Mac, but the scale
will be different on
Windows.

Keeping this in mind,
12 point type on a Mac
will print at 12 point. 12
point type on Windows
at 96 ppi, will actually
print at 16 points...

©2016 — Kelly McCathran

Responsive Design Intro

Responsive Design� 5

Your Responsive Canvas | The Browser Window
The browser window, on any device or platform, is truly your Responsive Canvas. Using your favorite HTML author-
ing application or image editor (for mock-ups) we begin the design process, keeping our limited canvas in mind.
Once your content is viewed online you are at the mercy of the end-user’s device:

•	 Screen size
•	 Resolution
•	 Font settings
•	 Zoom level
•	 and more...

Setting Up Constraints
In order to control the user’s experience, we setup constraints (or specify everything we can for the page):

•	 Default background color
•	 Font sizes
•	 Text color
•	 Header, Footer and Navigation areas
•	 Maximum of 960 pixel width for the window (many designers today are using 1180 as the new max size)

©2016 — Kelly McCathran

Responsive Design Intro

Responsive Design� 6

A Dao of Web Design
An article written by John Alsopp on April 7, 2000 is still a great (and necessary) read today:
http://alistapart.com/article/dao

This article gives insight into what was coming for the web. It lays the foundation of “rituals” which are repeated
patterns borrowed from an old medium and applied to a new one: like Radio to Television and Print to the Web. We
adopt habits and techniques that worked well for the old, not considering if they work well for the new. Linking the
web to the human experience or “harmony” of design (or to pull in the Dao, a way of living, of being for web develop-
ers). “Make pages which are adaptable.”

Well established hierarchies are not easily uprooted;
Closely held beliefs are not easily released;
So ritual enthralls generation after generation.

— Tao Te Ching; 38 Ritual

“The control which designers know in the print
medium, and often desire in the web medium, is simply
a function of the limitation of the printed page. We
should embrace the fact that the web doesn’t have the
same constraints, and design for this flexibility. But first,
we must “accept the ebb and flow of things.”

— John Allsopp | A Dao of Web Design

©2016 — Kelly McCathran

960 Pixel Grid

Responsive Design� 7

Fixed 960 Pixel Grid System (before Responsive)
The 960 Grid System is a standard dimension for web developers to work within. This grid system is used when
designing pages for the desktop, based on a maximum width of 960 pixels. Keeping 960 px in mind, the page is
often laid out in 12 or 16 columns, which can be used separately or together. For more detail see: http://960.gs

The goal of the 960 px grid system is for rapid prototyping and to avoid left and right scroll bars or clipped content on
end user’s browser windows. There are a lot of design layouts, and re-usable CSS files for the 960 pixel grid avail-
able online.

12-Column Grid
The 12-column grid is divided into portions that are 60 pixels wide.

Grid system available
for free: www.960.gs

12 columns

12-Column Layout

Content Could Span Several Columns

Source: http://github.com/nathansmith/960-Grid-System

16-Column Grid
The 16-column grid is made up of portions that are 40 pixels wide. Each column has 10 pixels of margin on the left
and right, which create 20 pixel wide gutters between columns.

Grid system available
for free: www.960.gs

16 columns

16-Column Layout

Content Could Span Several Columns

Source: http://github.com/nathansmith/960-Grid-System

©2016 — Kelly McCathran

Planning & Wireframing

Responsive Design� 8

Planning Responsive | Wireframes
To start I recommend creating 3 or 4 versions of your mock-up, to fit small, medium, and large screen sizes (for
smartphones, tablets, and desktop). Designing with code and testing in the browser is more difficult and time con-
suming. However, if you create flexible layouts at the thinner and wider ends of the design, you can easily resize the
browser to figure out exactly where a layout breaks.

Responsive Sketch Sheets
Here are a few resources for wireframing.

Responsive Web Design Sketch Sheets (PDF files with different blank layouts)
http://jeremypalford.com/arch-journal/responsive-web-design-sketch-sheets/

Zurb Responsive Sketchsheets (PDF files with different blank layouts)
http://zurb.com/playground/responsive-sketchsheets

APP Sketchbook (a physical notebook)
http://appsketchbook.com/products/responsive-design-sketchbook

Electronic Wireframe & Planning Tools
This area is ever evolving, there are many tools to choose from here. I have listed a few:

•	 NEW Adobe Project Comet: http://adobe.com/ProjectComet
•	 Webflow: https://webflow.com
•	 Balsamiq: https://balsamiq.com
•	 Adobe Comp (App): http://www.adobe.com/products/comp.html
•	 Sketch (App): https://www.sketchapp.com

©2016 — Kelly McCathran

HTML5 Intro

HTML5®� 9

HTML5
 �HTML5 is the latest iteration of HTML, but it is so much more than that. HTML5 builds on the

W3C’s (World Wide Web Consortium) open web platform. HTML5 attempts to foster development
with the full potential of the web.

HTML5 supports a richer (and new) set of tags, microdata and microformats. RDFa (Resource
Description Framework in Attributes) technology is also part of HTML5. RDFa provides a set
of markup attributes that has machine-readable hints. Here is a real world example: If I see the
website zappos.com and I click the “Like” button on Facebook™ my news feed can change to
display more catered information, based on the knowledge that I like Zappos products. This
means that we have an evolving, data-driven web experience.

The Need for New HTML Elements
When HTML5 was being developed, they researched the most commonly used ID and Class names (in CSS). Some
of the most popular results were:

•	 Header
•	 Footer
•	 Nav
•	 Section
•	 Article
•	 Figure
•	 Audio
•	 Video
•	 Embed
•	 Time
•	 Progress

For this reason these new HTML elements are built-into HTML5. Think of them as an addition to he standard <h1>
and <p> tags.

©2016 — Kelly McCathran

HTML5 Intro

HTML5®� 10

WHATWG | New Standards Body
The WHATWG (Web Hypertext Application Technology Working Group) http://whatwg.org was established in 2004 as
a community of developers interested in evolving the web. The WhatWG was started by Mozilla, Opera and Apple
and became the driving force behind the development of HTML5. Their main focus is HTML, DOM (Document Object
Model), and URLs including an API (Application Program Interface) for URLs. There are other goals of the WhatWG
and increasingly implementers and interested WhatWG community members are communicating on GitHub. Making
the process open to anyone, helping the community collaborate and contribute to the new web standards.

Workshop on Web Applications and Compound Documents
The impetus behind WhatWG started in mid-2004 at a W3C Workshop at on Web Applications and Compound
Documents held at Adobe in San Jose. The W3C had so far failed to create a language for web applications, XHTML
became standard in 1999, but still didn’t address this. Mozilla and Opera jointly proposed a vote to see if the W3C
should extend HTML and the DOM to support web applications. The vote was defeated: 8 YES and 14 NO.

HTML5 a Living Standard
HTML is a living standard, the WhatWG has abandoned the HTML5 specification in favor of HTML. Just HTML, that
evolves and grows as necessary. When we will stop referring to HTML by the version number is anyone’s guess.

©2016 — Kelly McCathran

HTML5 Intro

HTML5®� 11

See What CSS3 & HTML5 Can Do
http://thegraphicalweb.com

©2016 — Kelly McCathran

HTML5 Intro

HTML5®� 12

http://theexpressiveweb.com (site no longer active)

•	 CSS3 Animations •	 CSS3 Web Fonts
•	 CSS3 Gradients •	 HTML5 Audio
•	 CSS3 Media Queries •	 HTML5 Canvas
•	 CSS3 Shadows •	 HTML5 Forms
•	 CSS3 Transforms •	 HTML5 Video
•	 CSS3 Transitions •	 Web Storage

©2016 — Kelly McCathran

HTML5 Intro

HTML5®� 13

HTML5 Rocks | http://html5rocks.com

Google Analytics

©2016 — Kelly McCathran

CSS Intro

CSS & CSS3� 14

Cascading Style Sheets (CSS)
Cascading Style Sheets give us a better method than HTML for specifying how content should be presented on a
web page. The main reason to use CSS is to separate Structure and Presentation. CSS can control many things, includ-
ing: fonts, colors, background images and page layout. Another important reason to use CSS, is to have custom
stylesheets for different devices. You could use one stylesheet for Print, one for On-screen and a third for Mobile
devices. As you make a change to the CSS, when using External styles, those changes Cascade down to all the
pages referencing that CSS document.

One important reminder, as with HTML, different browsers interpret Cascading Style Sheets differently. It is essential
to test your pages on as many browsers and platforms as possible. Currently these are the most popular browsers,
at a minimum you should keep 2 or 3 on your hard drive:

•	 Internet Explorer
•	 Firefox & Mozilla
•	 Netscape
•	 Safari
•	 Opera
•	 Mobile browsers (Safari for iPhone)

CSS Box Model

©2016 — Kelly McCathran

CSS Intro

CSS & CSS3� 15

Three Methods for Applying CSS
There are 3 methods for applying Cascading Style Sheets to your web pages: Inline, Embedded or External.

Inline
Inline Cascading Style Sheets occur directly in the HTML and are supported by every tag. They are easy to under-
stand, but not very practical since you’d have to keep repeating common style changes throughout the HTML.
Example:

<body>
	 <h1 style=“color: #669966; font:Verdana, Geneva, sans-serif;”>Welcome to CSS</h1>
	 <p style=“font:Verdana, Geneva, sans-serif;”>This is the first paragraph.</p>
	 <p style=“font:Verdana, Geneva, sans-serif; font-size: .7em; text-align:center”>
	 Copyright 2008 Kelly McCathran</p>
</body>

Embedded
Embedded Cascading Style Sheets specify all style information in the header of the HTML, using a style tag. This
gives the page “rules”.
Example:

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<title>CSS Practice</title>
<style type=”text/css”>
	 <!--
	 h1 {
		 font-family:Verdana, Geneva, sans-serif;
		 color:#669966;
	 }
	 -->
</style>

</head>

Note: �Typically for Embedded
CSS, older browsers need
HTML comments wrapping
the CSS. This way if it can’t
interpret the styles, the
code won’t be displayed.

©2016 — Kelly McCathran

CSS Intro

CSS & CSS3� 16

External
External Cascading Style Sheets link to a separate CSS document; thereby allowing web browsers to only have to
download the style sheet once and use it multiple times.
Example:

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />
<title>CSS Practice</title>
<link rel=”stylesheet”
	 type=”text/css” href=”CSS_practice.css”/>
</head>

CSS Document “CSS_practice.css”

@charset “UTF-8”;
/* CSS Document */

h1 {
	 font-family:Verdana, Geneva, sans-
serif;
	 color:#669966;
}
p {
	 font-family:Verdana, Geneva, sans-
serif;
	 font-size:1em;
}

Note: �You can also have multiple
external CSS docs refer-
enced in the same HTML
file.

©2016 — Kelly McCathran

CSS Intro

CSS & CSS3� 17

CSS Vocabulary
Although Dreamweaver aids in the building of CSS styles, every good web designer should be able to “talk the talk”.

<h1 style=“color: #669966;”>Welcome to CSS</h1>

Opening
HTML Tag

Closing
HTML Tag

CSS
Property

HTML
Attribute

CSS Value

CSS Properties are followed by colon and the value or values are listed after.

CSS Values are listed after properties. To list more than one value a comma is used. Semicolons are used to end a
line (called a declaration). Also, the semicolon is equivalent to a return in UNIX.

CSS Selectors have 3 categories: Element, ID, or Class (discussed later in this chapter).

CSS Rules apply to a selector or style being reformatted with properties and values in the header of the HTML. A
stylesheet is a group of rules.
Example:

property:value;
color:#696;

Note: �Stylesheet Rules are
applied from the top-down.
Rules that occur later in
the Stylesheet override or
update earlier rules.

©2016 — Kelly McCathran

CSS Intro

CSS & CSS3� 18

Types of CSS Selectors

Element
CSS Rules can be applied to an HTML Element (tag) such as the <p> or <h1> tags and Selectors are used to identify that
rule. These are my favorite way to define the formatting for large portions of text and they redefine all occurrences of
that element on the page. In the CSS you identify the Element and re-define it’s style settings.
Example:

h1 {
		 font-family:Verdana, Geneva, sans-serif;
		 color:#669966;
	 }

ID
The 2nd type of Selector is ID Selector, as mentioned earlier. With ID selectors you are identifying unique areas of the
page that are named within any tag. IDs can only call to one element on a page.

IDs aren’t limited to DIV & SPAN, but they are good examples of how IDs can be used. SPAN tags are more finite
than DIV, they can specify a formatting change on a single character. The DIV tag defines a division/section in a docu-
ment. Standard DIV attributes include: id, class, title, style, dir, lang, xml:lang
Example:

<div id=“copyright”>Copyright 2008 - Kelly McCathran</div>
Example:

<style type=“text/css”>
	 #copyright {
 		 font-family:Verdana, Geneva, sans-serif;
	 	 font-size:.7em;
	 	 text-align:center;
		 color:#999;
	 }
</style>
<div id=“copyright”>Copyright 2008 - Kelly McCathran</div>

©2016 — Kelly McCathran

CSS Intro

CSS & CSS3� 19

Class
The 3rd type of Selector is a Class selector which can be applied to any text in the HTML, regardless of the tags used
to format the text. All Class selectors start with a period (.) and can be used over and over again in the same page.
Example:

<style type=”text/css”>
.quote {
	 font-family: Verdana, Arial, Helvetica, sans-serif;
	 font-style: italic;
	 color: #666;
}
-->
</style>

<p class=“quote”>If you can’t lead by example, at least be a horrible warning.</p>

3-Digit Hexadecimal Values
The three-digit hexadecimal color value can be listed in the form #RGB, where RGB is a three-digit number that can
be expanded to define the six-digit color. In this usage, each digit is repeated once.
Example:

#RGB maps to the color #RRGGBB

#696 maps to the color #669966

Note: �HTML Elements can have
both Class & ID properties
assigned to them:

•	 Class settings over-
ride default Element
properties

•	 ID settings override
Class and default
Element
properties

©2016 — Kelly McCathran

CSS3

CSS & CSS3� 20

CSS3
CSS3 along with HTML5 provides a more powerful way to adapt print publications to a rich digital format, far beyond
the original capibilities of the first generation ePub (for eReading devices).

Rounded CSS Corners
A popular request when styling a page is to add CSS rounded corners or “the CSS corner.” CSS corners that aren’t
square are in high demand for essential elements in web page design and app design. The elements that absolutely
need rounded corners are commonly the “chrome” of a web application or page. Chrome is not only the name of
Google’s browser, but it is also a generic term referring to outer parts of a window or app. Items that can be classed
as chrome are: scroll bars, buttons, visually attractive tabs and dialog boxes. Rounding the corners give a more
visually-polished look and feel to your UI (user interface) and enhance the overall UX (user experience).

Until CSS3, rounded corners had to be created by using tables and tiny rounded images that were placed in each
corner. While this worked in EVERY browser, it was cumbersome to write the code (to say the least). From this
design need many alternate methods sprung up, blog posts claiming “this is the way to do it”, dedicated JavaScript
libraries and many JQuery plug-ins.

Today we use the border-radius property in CSS3—Curve Radii to accomplish rounded corners. Example:

p {
	 boder-radius: 20 px;
	 background: #696;
	 margin-left: 80;
	 margin-right: 80;
}

©2016 — Kelly McCathran

CSS3

CSS & CSS3� 21

Rounded Corners for Multiple Browsers
To compensate for the difference among browsers, many people create a CSS Class with selectors for multiple
browsers.

Example

.rounded-corners {

 	 -webkit-border-radius: 30px;
 	 -moz-border-radius: 30px;
	 -o-border-radius: 30px;
	 border-radius: 30px;

}

CSS Border-radius Prefix
-webkit- is for Chrome & Safari
-moz- is for Firefox
-o- is for Opera

In the example above the prefix wrapped in - - is for additional browser support. Most brows-
ers released or updated after 2011 don’t require this selector. Many coders leave this in, to
compensate for large government agencies or corporations that only upgrade their software
every 5 years.

Rounded Corners for IE9
IE9 in Adobe® BrowserLab

�IE8 and older simply do not support border-radius. IE9 is reported to, it doesn’t
work with the above CSS. There are many recommendations for extra code to
get this to work (adding to the CSS, HTML, using a plug-in, or writing JavaScript).
None of which I believe is worth the time here.

Opera

Safari

Firefox

Chrome

©2016 — Kelly McCathran

Media Queries

Responsive Design� 22

Media Query Intro
In order to deliver ideal content to every screen you need to serve different code to different devices, this is accom-
plished using CSS3 Media queries. A media query allows you to define special rules that apply to devices at certain
width break points. For example, if the width is larger than x, then use this CSS. Media queries contain a media type
and one or more expressions. Keywords such as “and” “not” or “only” help identify exactly when styles should be
applied.

In the above code, the sidebar’s default width is 600 pixels. If the width is lower than 800 pixels, the sidebar becomes
300 pixels.

CSS for Media All

div.sidebar {
	 width: 600px;
	 color: #fff;
	 background: #333;
	 height: auto;
}

@media all and (max-width: 800px) {
	 /*styles assigned when width is smaller than 800px;*/
	
	 div.sidebar {
	 	 width: 300px;
	 }
	
}

HTML for DIV

<div class=”sidebar”>
<h1>Sidebar</h1>
</div>

©2016 — Kelly McCathran

Responsive Formula

Responsive Design� 23

Flexible or Fluid Grid = The Formula
It is important to think of your page content like water, that can pour into many different screen sizes. A flexible grid
can ensure that your content works, as intended, on any screen that views it. Creating separate fluid layouts for each
breakpoint would be a lot of work, to avoid that we will use 1 flexible grid. A grid is typically defined as a set number
of columns with gutters on either side. The columns and gutters are typically specified using CSS classes.

If the context size of most websites is 960 pixels wide, we can use this in our formula to get relative percent instead
of fixed pixels:

target ÷ context = result

target = current viewport | context = original goal

To start we’ll need a container for the entire page, using 90% as an example, the container will expand and contract
with the viewport. If we center that container on the page, the left and right margins will be at 5% on each side.

Now, if the target width of a the main section of your page is 900 pixels and the context (or default goal) is 960 px we
can use the formula above, plugging in these numbers:

900 ÷ 960 = 0.9375 | Convert that to percent: 93.75% to use in our CSS.

Responsive Demo
http://unsemantic.com/demo-responsive

©2016 — Kelly McCathran

Responsive Formula

Responsive Design� 24

Flexible Margins or Flexible Padding
The context, when setting flexible margins or padding is slightly different for each.

1.	 When setting flexible margins, your context is the width of the element’s container.

2.	 When setting flexible padding, your context is the width of the element itself.

CSS Box Model Review
Think back to the CSS Box Model when calculating the padding, in relation to the box (or content) itself.

Reset CSS
All browsers have presentation defaults for paragraph, headings and other content, but no two-browser families
have the same defaults, for this reason we remove (or reset) built-in settings from the CSS. Eric Meyer has done
extensive research and put together a public domain Reset CSS file.

Why reset browser css: http://meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning

Get the Reset CSS from meyerweb.com: http://meyerweb.com/eric/tools/css/reset

©2016 — Kelly McCathran

The Viewport

Responsive Design� 25

The Viewport
The viewport meta tag was introduced by Apple (in Safari Mobile), and later adopted and developed by others.
Mobile browsers display pages in a virtual “window” which is technically the viewport. This viewport is usually wider
than the actual screen, so the device doesn’t need to scale every page to fit in a tiny window. Creating a viewport
that is wider than the actual screen allows users to pan and “pinch-zoom” to see different areas of a page.

Technically the viewport constrains the <html> element (the parent block of your web page or site). Keeping that logic
in mind, the width of your <html> element, on mobile, is restricted by the width of the viewport. Ideally, the <html>
element takes 100% of the width of the viewport. The viewport is not an HTML construct, so you can’t manipulate it
using CSS

The viewport meta tag allows web developers to control the size and scale of the viewport.

<meta name=“viewport” content=“width=device-width”>

©2016 — Kelly McCathran

The Viewport

Responsive Design� 26

Layout Viewport
The layout viewport is considerably wider than the visual viewport. Think of the layout viewport as the area that is
zoomed out. It does not change size or shape. The layout viewport is what allows mobile users to pan, and pinch
zoom.

Mobile Viewport or Visual Viewport
The mobile or visual viewport is a smaller frame that you are seeing through to the layout viewport. You can zoom in and
out of this “frame,” change orientation, and move around — but the layout viewport never changes.

When you load a web page on a mobile browser, it will typically assume you’re viewing a desktop site, and that you
want to see all of it, not just the top left corner. If a non-responsive site is encountered on a smaller device, often the
viewport will automatically scales the site to fit the tiny screen.

The default viewport size for iOS is 980 pixels, if you don’t use the meta name=“viewport” tag, attribute, and value.

Static Site		 Pinch Zoom Viewport

	

©2016 — Kelly McCathran

The Viewport

Responsive Design� 27

Viewport Control

Viewport Meta Tag
If your mobile design is intentionally built to 320 px wide you can specify the viewport width:
<meta name=“viewport” content=“width=320”>

To match your layout width to exact size of the device, use width=device-width. If you use the code below to set the
width to device-width (or 100% of the device) the browser automatically sets the initial scale to 100%.
<meta name=“viewport” content=“width=device-width”>

To be certain that your layout will be displayed as you intended, you can set the initial-scale=1 (or zoom level to 1:1).
This will ensure when the page is opened, your layout will display properly at 1:1 scale weather rotated to portrait or
landscape. Specifically on the iPhone, no re-zooming will happen.
<meta name=“viewport” content=“width=device-width, initial-scale=1”>

If you’d like to prevent any zooming by the user set the maximum-scale=1. (This may not be recommended, since you
have no way of knowing if the viewer can read everything as well as possible at a 1 to 1 ratio):
<meta name=“viewport” content=“width=device-width, initial-scale=1, maximum-scale=1”>

Recommended Viewport Meta Tag
If you don’t want to prevent the user from scaling (which is a kindness for the visually impaired), leave off the
maximum-scale=1. This is the common, or recommended, tag:

Viewport Width & Height Attributes
width — The width of the virtual viewport.
device-width — The physical width of the device’s screen.

height — The height of the virtual viewport.
device-height — The physical height of the device’s screen.

<meta name=“viewport” content=“width=device-width, initial-scale=1”>

©2016 — Kelly McCathran

The Viewport

Responsive Design� 28

iPhone Widths
In calculating widths, we should consider the iPhone first, since it is by far the most popular brand of smart-
phone. The iPhone 1 – 5 have a maximum width of 320 points in the portrait orientation. The iPhone 6 has a width
of 375 points and the 6 Plus 414 points (hit is a higher pixel density display). Yes, I am quoting points here, not pixels.
Drawings begin as points, and points are referred to for a mathematical coordinate space, then devices render
points into pixels. When the points are rasterized, they are multiplied by a scale factor, to get their coordinates on
the screen. Higher scale factors produce more on-screen detail. The iPhone 2 & 3 had a scale factor of 1, with a result-
ing resolution of 320 x 480. The iPhone 4 had a slightly smaller screen (in physical dimensions) than the iPhone 5, but
both had a scale factor of 2, resulting in a resolution of 640 x 960 for the iPhone 4 and 640 x 1136 for the iPhone 5. The
iPhone 6 Plus gives us a higher scale factor of 3, that we will also have to consider when designing responsive. There
are a ton of other “non-Apple” devices out there, and they have a wide variety of viewport widths.

Source: http://www.paintcodeapp.com/news/ultimate-guide-to-iphone-resolutions

©2016 — Kelly McCathran

The Viewport

Responsive Design� 29

Viewport CSS
Another way to control the viewport is with the @viewport CSS rule, which is newer than the viewport meta tag. It
is important to place the @viewport CSS rule before any media queries. Most designers make it the 1st rule or near
one of their top-level styles.

@viewport {
	 width: 480 px;
	 zoom: 1;
}

Viewport Width (vw) in CSS3
CSS3 added vw (viewport width) and vh (viewport height). 10 vw = 10/100 of the current viewport width or 10% of the
width. 20 vh = 20/100 of the current viewport height or 20% of the height.

You might wonder why we need another way to determine width when we could just specify div { width: 50%;},
well the body width does not include margin. Body height is dependent on the amount of content on the page (not the
dimensions of the browser window). Finally, percentage width of body can not be applied to font size. For example, a
font size of 20% sizes the font relative to defaults, not the dimensions of the viewport.

©2016 — Kelly McCathran

Hardware or CSS Pixels

Responsive Design� 30

Is a Pixel a Pixel?
Before digging into this topic, I recommend reading “A tale of two viewports — part one”
http://www.quirksmode.org/mobile/viewports.html

Hardware Pixels (or Device Pixels)
The values of screen.width and screen.height are the total width and height of a users display. These are measured
in device pixels (or hardware pixels), and are fixed. Screen resolution is a feature of the monitor and not the browser.
This is not as important to responsive design (when it comes to the desktop) as Window size. Web developers are not
interested in the device width (for the most part); it is the width of the browser window that is the most crucial piece
of information.

Reference Pixels (or CSS Pixels)
The pixel isn’t as fixed as we once thought it was. The proliferation of devices with varying ppi resolutions has made
the pixel less exact. CSS Pixels (or Reference pixels) are not the same as device pixels, especially when viewing
distance, retina and HiDPI displays are used, but we can predict their size to create responsive content. Reference
pixels are defined by the W3C as:

“The reference pixel is the visual angle of one pixel on a device with a pixel density of 96dpi and a distance from the
reader of an arm’s length. For a nominal arm’s length of 28 inches, the visual angle is therefore about 0.0213 degrees.
For reading at arm’s length, 1px thus corresponds to about 0.26 mm (1/96 inch).”

Source: http://www.w3.org/TR/CSS2/syndata.html#length-units

Using device-pixel-ratio media query can identify devices with scaled pixels. For example: the iPhone 4 has a
device-pixel-ratio of 2, so it measures pixels as two-times the size of a hardware pixel. Many Android devices have a
device-pixel-ratio of 1.5, which will scale objects one-and-a-half times larger than the hardware pixel.

Screen Density
Hardware Pixels are the smallest point a screen can display. Higher density displays can show roughly double the pixels
in the same area. If you don’t accommodate for these newer screen densities, the website & content could display
as half the size.

Reference Pixels (or CSS Pixels) is a unit of measure that establishes an optical standard for the length of a pixel, and is
totally independent of hardware pixels. The commonly accepted value is 1/96 of an inch.

©2016 — Kelly McCathran

Hardware or CSS Pixels

Responsive Design� 31

Device-Pixel-Ratio
Each HiDPI or Retina devices will have a device-pixel-ratio value, which is a scaling factor applied to reference pixels,
so that they map more closely to hardware pixels. Apple’s iOS devices typically have a device-pixel-ratio of 2, which
means the screen density is exactly double.

Android, however, uses four basic device-pixel ratios:

•	 Low Density of 0.75 when lower than 120 pixels
•	 Medium Density of 1, for screens up to 160 pixels
•	 High Density of 1.5, for screens up to 240 pixels
•	 Extra High Density of 2 for screens up to 320 pixels

Window Size
Any responsive page will need to know the inner dimensions of the browser window, meaning, is the page maxi-
mized, do they have bookmarks along the top or favorites on the right side. To find these values you can use
window.innerWidth and window.innerHeight or document.documentElement.clientWidth &
document.documentElement.clientHeight (the case for using one over the other can be a bit technical, JavaScripters
will understand the differences). Keep in mind that measured width and height do include the scrollbars, which are
technically part of the window. Scrollbars average between 17 – 20 pixels in width and height. To be safe, you
should typically deduct 20 pixels for scrollbars.

©2016 — Kelly McCathran

Breakpoints

Responsive Design� 32

Break Points
When moving from a fixed width layout to it is necessary to establish break points for key viewport sizes. These
break points will form the basis for our CSS3 Media Queries that “trigger” CSS style rules on the screen at a specific
viewport width.

•	 320 px for common smartphones including iPhone in portrait orientation
•	 480 px and below for iPhones in landscape orientation and many of HTC devices
•	 768 px – 980 px for iPad and other tablets
•	 980 px and up for desktop monitors
•	 1200 px and up for larger desktop monitors

Layouts for Each Breakpoint
Simple Design, Few Changes = Layouts for Each Breakpoint. If your design needs are simple and un-likely to change often,
you may want to build layouts for each break point. Those layouts can be tailored to fit nicely on several different
screen sizes.

Framework for Specific Needs
Complex (or Deep) Designs, Many Variations = Framework for Specific Needs. If your design has more complex elements
and a wide range of page types, you may need to craft a framework for your site’s specific needs. The framework
consists of each varying layout’s design, at the different break points. These frameworks may be just a layout.css
applied differently at different break points, or site wide (template-based) content that includes: HTML, JavaScript, CSS
and Web Fonts.

Custom Framework Concerns
If you select a template-based framework, you may encounter the following issues:

•	 There may be a lot of custom, non-semantic class names (messy HTML & CSS).
•	 You may need specific container or clearing elements, which add code to your pages.
•	 The templates are often large in size and sites rarely use ALL the code that is included, leaving you with

bloated code.

©2016 — Kelly McCathran

Type

Responsive Design� 33

Relative Type Sizes
When given a target size for type (ideal), that needs to be made responsive, you use the same formula that we used
for fluid grids: In most cases 1 em = 16 pixels below is a real-world example of the formula:

target ÷ context = result

A target of 24 px divided by 16 px (1 em, or 100% of the default font size, ultimately the context) = result of 1.5 em.

Proportional Type Sizes
Unlike responsive images that scale vertically as the width of their content column adjusts, text set in pixels does not
automatically scale as the window re-sizes, it wraps. That can cause a number of layout issues and often make lines
of text that are either: too short or too long to read easily. If you have text that you would like to make responsive
(and proportional to the original size) you can apply the same formula we used above. This time; however, the context will
be 24 pixels. If our goal at 100% is 11 pixels, the formula would be:

target of 11 px divided by 24 px (the goal size of our context) = result of 0.458333333 em.

Web Typography
A More Modern Scale for Web Typography | Article
http://typecast.com/blog/a-more-modern-scale-for-web-typography

“Design is the fundamental soul of a human-made
creation that ends up expressing itself in successive
outer layers of the product or service.”
 — Steve Jobs, 2005

©2016 — Kelly McCathran

Flexible Images

Responsive Design� 34

Flexible Images
Images created and sized to look best on desktop screens are not ideal for smartphones that may have a maximum
width of 320 or 240 pixels. The opposite is also true, if you enlarged images optimized for mobile, you would see
giant pixelated photos.

Using fewer raster (or bitmap) images can benefit your responsive layout. Replacing raster images with SVG (Scalable
Vector Graphics) or using newer CSS, such as CSS Transform, can make your pages more responsive. A drawback to
SVG is that they can be larger than raster images and they need to be redrawn with each screen change. A concern
in using newer CSS is that it may not be universally supported.

Icon fonts are another way to create scalable graphics (that are in fact a real text, or a web font).

3 Factors in Determining Responsive Images
There are 3 primary considerations when preparing for responsive images:

•	 Screen size (dimensions in pixels for width & height)
•	 Screen density (72, 96 or higher ppi)
•	 Bandwidth (if you serve higher ppi images to higher density displays, you wouldn’t want to do that over slower

connections)

©2016 — Kelly McCathran

Flexible Images

Responsive Design� 35

Flexible Image Concerns by Device
Smartphones

 �• Small screen size
• Low bandwidth
• High Latency (long delays incurred in processing network data)
• More likely to be HiDPI or Retina

Tablets

 �• Medium screen size
• May be high or low bandwidth
• Possibility of HiDPI or Retina

Desktop / Laptop

 �• Often larger screen size & resolution
• Could be low or high bandwidth (more often high)
• Possibility of HiDPI or Retina

©2016 — Kelly McCathran

Flexible Images

Responsive Design� 36

Raster Images on HiDPI or Retina Screens
For raster images in responsive layouts, you have a few options for high-density screens. The basic formula is this:
if you need an image to be 100 pixels x 100 pixels, you create the image at the scaling factor that’s appropriate for
the targeted screen. For example, an iOS device with a Retina display that has a scaling factor of 2 your image should
be 200 pixels x 200 pixels. It’s important to note here that PPI does not matter; it’s only about the physical amount of
pixels. When targeting the high-density screen, you use the 200 x 200 pixel image and resize it to fit the 100 x 100
pixel desired size.

This means that the end user will have to download larger images and not all screens have an easy scaling factor of 2
(an example is the 4 different screen densities of Android devices).

Responsive Background Images
Background images of different sizes can be swapped in or out using the @media and device-pixel-ratio queries.
Support for device-pixel-ratio isn’t available across all platforms and may require vendor prefixes.

@media screen and (device-pixel-ratio: 2) {
	 .highres {
	 	 background: url (image_highres.jpg): background-size: 50%;
	 }
}

©2016 — Kelly McCathran

Flexible Images

Responsive Design� 37

Responsive Image Options
1.	 Replace fixed dimension images with percentages (or relative unit values) — Instead of specifying a fixed width &

height in the HTML, you can use width 100% or the CSS property of max-width: 100%.
)

When doing this, you should specify a maximum-width property to avoid scaling the image beyond its ideal
dimension. To do this, you could place the image in a flexible container and use max-width = 100% property to
constrain the image to the size of the container (this trick works with video also).

Technical Note: Internet Explorer doesn’t support max-width.

This method also makes it necessary for you to serve the largest image that your layout needs, and applies
scaling down to fit your grids. This means that mobile devices (often on cell phone networks) will be down-
loading larger images than necessary).

Img Tag Images
Swapping context-based images, using the tag requires JavaScript (see option #3 for more details).

Note:
Width in HTML speci-
fies the width of the
element. This is different
than max-width in CSS,
which specifies the width
“not to exceed.”

img {
max-width: 100%;
}

©2016 — Kelly McCathran

Flexible Images

Responsive Design� 38

2.	 Load the image as a background — If the image doesn’t affect the structure of your page, you could load the
image as a background, specifying different background images for each break point.

This method only works with images that don’t need to be in the actual HTML. Also, if your page or content
needs to be accessible (have the ability to be read out loud for the visually impaired), this solution won’t work.

Technical Note: �On older Android Devices (running 2.x or older), ALL CSS background images are downloaded,

not just the one required for that media query. This is fixed for newer Android devices.

@media (max-width: 480 px) {
	 div.swapImg {
	 background: url (“phoneImage.jpg”)
	 }
}

@media (min-width: 481 px) and (max-width: 480 px) {
	 div.swapImg {
	 background: url (“tabletImage.jpg”)
	 }
}

@media (min-width: 779 px) {
	 div.swapImg {
	 background: url (“desktopImage.jpg”)
	 }
}

©2016 — Kelly McCathran

Flexible Images

Responsive Design� 39

3.	 Use JavaScript and/or server-side scripting — There are many elegant & robust solutions that use JavaScript or
server-side scripting to serve the proper image, at the proper size for the device that is viewing the page.
One free solution is Picture Fill by the Scott Jehl: https://github.com/scottjehl/picturefill

There are many solutions out there and they work on the same basic principle:
	 • Have a script parse the page for context
	 • Replace the smaller images with larger images (where appropriate)

Drawbacks to this method are the complexity, slow load times and often; the replacement images are
requested after the original images have already been downloaded.

©2016 — Kelly McCathran

Flexible Images

Responsive Design� 40

Browser Prefetching or Link Prefetching
There is another caveat to the aforementioned responsive image solutions, many modern browsers have a mecha-
nism that pre-loads or “prefetches” documents or assets that the user might need in the near future. Based on hints from
the web page, after a page has loaded, a browser may silently prefetch specified documents and store them in the
cache. The “hints” that the browser looks for are the <link> tag or HTTP Link: header with a relation type of either
next or prefetch. Meta tags with http-equiv=”Link” are also browser hints to prefetch. When the browser finds these
hints, it queues up each unique request when the browser is idle.

Prefetching is part of the scope of HTML5 and is working towards standardization for all browsers supporting newer
HTML. Even HTML 4.01 allows for new link relation types and does not violate any web standards.

Technical note: Currently, <a> anchor tags are not prefetched. Secure content (https) can not be prefetched.

©2016 — Kelly McCathran

Flexible Images

Responsive Design� 41

The Future of Responsive Images | or <picture>
The WhatWG (see the HTML section for more details on whatwg.org or check https://html.spec.whatwg.org) has a
new standard of srcset (like the attribute) can list several images to be used in one
tag for device-pixel ratio-based images. Example:

Technical Note: In the above example 2x and 1.5x represent the pixel depth ratio.

A competing solution, proposed by the W3C’s Responsive Images Community Group is the <picture> element. The
<picture> element (tag) works as a parent for a range of source element and an tag. Picture also works with a
<source> tag and srcset attribute and can contain media queries and alt text.

Support for SRCSET
Caniuse.com tracks many newer HTML features, see which browsers currently support this attribute: caniuse.com/
srcset. Currently, the newest versions of these browsers support srcset:

•	 Chrome
•	 Firefox
•	 Safari (not fully supported, sizes using the w descriptor don’t work)
•	 iOS Safari (not fully supported, sizes using the w descriptor don’t work)
•	 Opera
•	 Android 5.x
•	 Chrome for Android
•	 IE Edge is also plans to support srcset

<img	 alt=“Headshot” src=“/responsive/headshot.jpg”
	 srcset=“/responsive/headshot1dot5x.jpg 1.5x, /responsive/headshot2x.jpg 2x”>

©2016 — Kelly McCathran

Flexible Images

Responsive Design� 42

Support for <picture>
Caniuse.com is tracking <picture>: caniuse.com/picture. The newest versions of these browsers support picture:

•	 Chrome
•	 Firefox
•	 Opera
•	 Android 44
•	 Chrome for Android

Note: 	 IE Edge & Safari on desktop & iOS do not support <picture>.

Picturefill Responsive Image Polyfill
The picture element is a newer W3C standard that looked promising to web developers, offering the hope of
deliving an appropriate image to every device, depending on conditions like screen size, viewport size, screen
resolution and more. Picturefill is a JavaScript file that technically works as a polyfill on the <picture> tag or element.

Article | Picturefill 2.0: Responsive Images And The Perfect Polyfill
http://www.smashingmagazine.com/2014/05/12/picturefill-2-0-responsive-images-and-the-perfect-polyfill

©2016 — Kelly McCathran

Responsive Forms

Responsive Design� 43

Responsive Forms
Forms have always been a bit of a “pickle” for web developers. No matter how wide you make your form field width,
the size can change slightly from browser to browser. When you open a form on a smaller device, you throw another
wrench into the mix. There are some best-practices that will help make them more responsive. There is a large
movement to “mobile-first” forms.

Tips for Forms
There are several considerations to help you plan responsive forms:

•	 Structure your forms to prepare for responsive (eliminate tables).
•	 Use structural elements like list and field sets, for better form mark-up.
•	 Consider how the form layout needs to change from one device to another.
•	 Labels next to form fields are fine for larger screens, but when you scale down, the labels may need to go on

top of the input field.
•	 Since users tap with their finger to fill out forms, be sure to include enough distance in your form field (at

least 20 px), so they don’t tap the wrong area.
•	 Wrap the <label> tag around the <input> tag, this makes both the input and the label responsive to clicking

or touch.
•	 Use newer HTML5 attributes such as email, search and url. These supply the users with common characters

such at @ for email fields and .com for url.
•	 Use placeholder text for feedback to the user.

©2016 — Kelly McCathran

HTML5 Intro

HTML5 � 44

Required Reading
A Dao of Web Design
by John Allsopp
http://alistapart.com/article/dao

Resource Web Sites
The Graphical Web
http://thegraphicalweb.com

The Expressive Web
http://theexpressiveweb.com

WhatWG | Standards body for HTML5 and More
http://whatwg.org

HTML a LIving Standard | WhatWG
https://html.spec.whatwg.org

CSS Resources
World Wide Web Consortium, Cascading Style Sheets home page:
http://www.w3.org/Style/CSS/

Tutorial for Cascading Style Sheets:
http://www.w3schools.com/css

See what CSS Can do:
http://CSSzengarden.com

©2016 — Kelly McCathran

HTML5 Intro

HTML5 � 45

HTML5 Resources
List of New Elements in HTML5
http://www.w3.org/TR/html5-diff/#new-elements

Adobe HTML5, CSS3 and JavaScript Archive
http://www.adobe.com/devnet/html5.html

Free HTML5 Templates | HTML5 UP
http://html5up.net

HTML5 Forms
A FORM OF MADNESS
http://diveintohtml5.info/forms.html

Browser Testing of HTML
There are many sites that can check HTML and CSS to validate your code, be sure to test against a site that is plat-
form independent and not Microsoft-centric. Here is my shortlist:

W3C Markup Validation Service
http://validator.w3.org

HTML5Test
http://html5test.com

Adobe Edge Inspect
http://creative.adobe.com/products/inspect

On the Windows platform you can typically only run one version of Internet Explorer, here is a website with instruc-
tions on how to install multiple versions of IE:
http://tredosoft.com/Multiple_IE

©2016 — Kelly McCathran

Responsive Design Resources

Responsive Design� 46

Responsive Website Examples
The Boston Globe
http://thebostonglobe.com

RocketLawyer
https://www.rocketlawyer.com

Responsive Web Design Site by Ethan Marcotte
http://responsivewebdesign.com

Responsive Demo from unsemantic.com
http://unsemantic.com/demo-responsive

Responsive Design Resources
Responsive Web Design | by ETHAN MARCOTTE May 25, 2010
http://alistapart.com/article/responsive-web-design

RESPONSIVE DESIGN.is
https://responsivedesign.is

Deliver Faster Responsive Web Design Sites | Akami PDF
Can you optimize website performance for Responsive Web Design sites?
https://content.akamai.com/PG1127-HowToDeliverFast.html

Google Developers | Web Fundamentals
https://developers.google.com/web/fundamentals

A Tale of Two Viewports Part 1 (Desktop)
http://www.quirksmode.org/mobile/viewports.html

A Tale of Two Viewports Part 2 (Mobile)
http://www.quirksmode.org/mobile/viewports2.html

©2016 — Kelly McCathran

Responsive Design Resources

Responsive Design� 47

Responsive Testing
Free Mobile Web Performance Measurement Tool | Akami
http://mobitest.akamai.com

Responsive Images
Picture Fill by the Scott Jehl:
https://github.com/scottjehl/picturefill

Responsive Images Community Group
http://responsiveimages.org

